Faculty

Pioneering Rehabilitation

Dylan Edwards, Ph.D., P.T.

Director, Non-Invasive Brain Stimulation and Human Motor Control Laboratory

Assistant Professor, Neurology and Neuroscience
Weill Cornell Medical College

Co-Director, Intensive Course in Transcranial Magnetic Stimulation, Harvard Medical School 

Phone:

(914) 368-3180

Research Focus

Existing strategies to enhance motor function following brain and spinal cord injury are suboptimal, leaving patients with considerable disability. A greater understanding of motor recovery, refinement of existing strategies, and development of new methods is warranted. Our laboratory uses established and developing technologies to understand control of human voluntary movement, and functional recovery following neurological damage. Available evidence suggests that motor training can improve function, greater than spontaneous recovery alone. As well, the mechanisms underlying brain plasticity can be specifically targeted, using noninvasive brain stimulation and pharmacologic intervention. We are presently conducting a trial of controlled physical rehabilitation (robotics) combined with noninvasive brain stimulation of motor areas, to augment motor recovery following stroke and spinal cord injury. The robotic movement devices represent the most sophisticated interactive rehabilitation systems available, and are additionally appealing for their ability to quantify various aspects of movement. Transcranial Magnetic Stimulation (TMS) is an accepted tool to probe changes in the brain that might occur with training. Both TMS (applied repetitively, rTMS) and Transcranial Direct Current Stimulation (tDCS), are promising neuromodulation methods that can independently lead to transient improvements in motor behavior. We are investigating if rTMS or tDCS might enhance the practice-dependent plasticity resulting from behavioral training, and thus promote long-lasting improvements in function.  

Learn more about our current clinical studies.

Biography

Research
My main research interests focus on understanding and promoting neuroplasticity following brain lesion, and in particular, using controlled physical rehabilitation (robotics) combined with noninvasive brain stimulation of motor areas. I have a broad background and experience in clinical and basic neuroscience, as well as physical rehabilitation.

I have accumulated over 15 years of experience with the application of Transcranial Magnetic Brain Stimulation and more recently Transcranial Direct Current Stimulation (tDCS), and I possess a sound understanding of motor training and skill acquisition. This work commenced in 1994 with research involving healthy, skilled individuals, mapping cortical representations of muscles of the skilled preferred arm compared with the non-preferred arm. This was followed by investigations of how afferent information from moving limbs interacts with descending motor information. A number of studies were conducted to investigate aspects of movement kinematics and corticospinal excitability in healthy subjects. The purpose of these studies was to understand how proprioceptive information shapes movement output, and to provide an understanding of what might be occurring during passive movement therapies that form part of physical neurorehabilitation. These studies conducted over a three- year period examined limb movement speed, range and phase. In addition, how information from moving limbs affects different body parts was assessed, and the question of whether this projected to stationary but functionally related areas was investigated. This was further examined in a longitudinal case study in chronic stroke. In parallel to these studies I have conducted separate work focusing on enhancing motor function in patients with myositis using exercise therapies, with the development of novel strategies to provide suitable muscle overload without additional muscle degeneration. These included interventions designed to improve aerobic capacity. I have provided quantitative balance assessment for patients with orthostatic tremor, as well as Parkinson’s disease pre and post deep brain stimulation. I have been involved in the development of a novel rTMS technique known as iTMS (I-wave TMS) that leads to a progressive rise in corticospinal excitability, while using a lower dosage and intensity than conventional excitatory rTMS techniques. This work led to the application of iTMS in chronic stroke patients where it was shown to improve function in upper limb tasks. A larger study is presently under way. We have commenced work assessing basic physiological interactions of triple-pulse TMS delivered at I-wave intervals of 1.5ms. This appears to enhance excitatory networks and may prove to be a promising technique for neuromodulation.

My principal interest is in motor rehabilitation following neurological injury (stroke, spinal cord injury, and traumatic brain injury), and the majority of work has been in stroke. In 2007 I orchestrated a collaborative effort between MIT (robotic rehabilitation lab, engineering), the Burke Medical Rehabilitation Institute, neurorecovery and robotics section, and the Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, to investigate the novel combination of robotic movement therapy and brain stimulation. This led to a successful study, which has been presented internationally and published. These findings received wide interest and a full research proposal was subsequently funded by the NIH, with Dr. Edwards as the Principal Investigator, to examine these effects in a larger cohort, and to establish clinical significance. From 2005 and 2006 I established a funded Stroke / rTMS study between the major teaching hospitals in Western Australia. I have supervised and trained therapists/research assistants, and have completed the associated administration (e.g. IRB process). I have previously visited and presented at a number of reputable scientific laboratories in the field of human motor control and rehabilitation including University College London (Queen Square), Karolinska Institute Stockholm, and Monash University Melbourne. I have been interviewed by local and international media pertaining to my work and leading to printed publication (community and international newspapers). 

Teaching
I have successfully supervised 10 research, higher degree students in the field of motor rehabilitation, proprioception, and magnetic brain stimulation. Two of these students have received formal accolades for this work, including Australian government awards for science and innovation, and the work has been presented internationally. I have approximately 12 years experience lecturing at tertiary level in the areas of human motor rehabilitation, motor control and skill acquisition, and clinical neuroscience. This includes over 1,000 hours lecturing to more than 3,000 students at undergraduate and post-graduate levels. I have been recruited as a consultant for practical and theoretical aspects of human motor function testing in Malaysia and Singapore. I have lectured to students on topics of motor control and learning in relation to motor rehabilitation at three separate Universities in Western Australia, and various countries across the world in on-line format. I currently teach three times per year in a Harvard Medical School course, which I also co-direct. Students in this course are local, national and international (including Australia) and are typically medical doctors or Ph.D. graduates. I have the privilege to assist with the research training of some of the leading Physical Medicine Specialists in the United States, through my clinical laboratory at the Burke Medical Research Institute and Adjacent Hospital.

Clinical
My clinical experience in motor rehabilitation has involved working with traumatic brain injury, stroke, Parkinson’s disease, inclusion body myositis, polymyositis, spinal cord injury, multiple sclerosis, chronic pain, peripheral neuropathy, developmental coordination disorder and cerebral palsy. I have also worked with orthopaedic outpatients for retraining of correct movement patterns. This work was conducted in three separate locations as a part-time clinical load over five years, including an inpatient stroke rehabilitation ward, an outpatient movement disorders hospital clinic, and a private outpatient clinic. In addition, I have advised graduate students and clinicians on movement control issues for their patients, and I have conducted many hours of pro-bono work relating to physical rehabilitation or community education. I currently supervise clinical research in a facility that admits over 500 patients per year, as well as interstate and international operations. My clinical research expertise has been recognized through invitations to review and comment on some of the largest recent Neurorehabilitation Mulitcenter Clinical Trials in the United States, via the American Physical Medicine and Rehabilitation Society, and the American Society for Neurorehabilitation,

In summary, my collective experiences have lead me to pursue research using established and developing technologies to understand control of human voluntary movement, and functional recovery following neurological damage. Existing strategies to enhance motor function following stroke are suboptimal, leaving patients with considerable disability. A greater understanding of motor recovery, refinement of existing strategies, and development of new methods is warranted. The robotic movement devices represent the most sophisticated interactive rehabilitation systems available, and are additionally appealing for their ability to quantify various aspects of movement. TMS is an accepted tool to probe changes that might occur with training, however the promising neuromodulation method is to use TMS or tDCS to prime the brain for the activity-dependent plasticity induced by training. 

Restorative Neurology Clinic

The Burke Restorative Neurology Clinic provides an individualized exercise program using state of the art robotic devices appropriate for individuals with neurologic impairments or wheelchair bound, who want to maintain or improve their motor recovery, cardiovascular endurance and muscular stamina. Our staff has qualifications ranging from certifications by nationally and internationally recognized medical organizations to master’s degrees and doctorate degrees in physical and occupational therapy. 

The Burke Restorative Neurology Clinic is not standardized therapy and medical insurance does not cover membership charges.  The Burke Restorative Neurology Clinic is a self-pay program. 

All prospective members will be pre-screened to determine if a caregiver is required during the therapy session to assist the participant with their exercise program or self care needs.   A physician approval is required by all participants.

For more information, visit the Restorative Neurology Clinic page or call (914) 597-2111

Publications

Citations via Google Scholar

Edwards DJ, Cortes M, Thickbroom GW, Rykman A, Pascual-Leone A, Volpe BT. Reply: Evidence against volume conduction to explain normal MEPs in muscles with low motor power in SCI. Spinal Cord. 2014 Jul 22. doi: 10.1038/sc.2014.117.

Edwards DJ, Dipietro L, Demirtas-Tatlidede A, Medeiros AH, Thickbroom GW, Mastaglia FL, Krebs HI, Pascual-Leone A. Movement-generated afference paired with transcranial magnetic stimulation: an associative stimulation paradigm. J Neuroeng Rehabil. 2014 Mar 5;11:31. doi: 10.1186/1743-0003-11-31.

Elder J, Cortes M, Rykman A, Hill J, Karuppagounder S, Edwards D, Ratan RR. The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases. Neurotherapeutics. 2013 Oct 4. [Epub ahead of print]

Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classification of methods in transcranial Electrical Stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods. 2013 Oct 15;219(2):297-311. doi: 10.1016/j.jneumeth.2013.07.016.

Edwards DJCortes M, Thickbroom GW, Rykman A, Pascual-Leone A, Volpe BT. Preserved corticospinal conduction without voluntary movement after spinal cord injury. Spinal Cord. 2013 Oct;51(10):765-767. doi: 10.1038/sc.2013.74. [Featured on the cover.]

Bikson M, Bestmann S, Edwards D. Neuroscience: Transcranial devices are not playthings. Nature. 2013 Sep 12;501(7466):167. doi: 10.1038/501167b. [No abstract available.]

Dohle CI, Rykman A, Chang J, Volpe BT. Pilot study of a robotic protocol to treat shoulder subluxation in patients with chronic stroke. J Neuroeng Rehabil. 2013 Aug 5;10:88. doi: 10.1186/1743-0003-10-88.

Edwards DCortes M, Datta A, Minhas P, Wassermann EM, Bikson M. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. Neuroimage. 2013 Jul 1;74:266-75. doi: 10.1016/j.neuroimage.2013.01.042.

Cortes M, Elder J, Rykman A, Murray L, Avedissian M, Stampa A, Thickbroom GW, Pascual-Leone A, Krebs HI, Valls-Sole J, Edwards DJ. Improved motor performance in chronic spinal cord injury following upper-limb robotic training. NeuroRehabilitation. 2013 Jan 1;33(1):57-65.

Giacobbe V, Krebs HI, Volpe BT, Pascual-Leone A, Rykman A, Zeiarati G, Fregni F, Dipietro L, Thickbroom GW, Edwards DJ. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: The dimension of timing. NeuroRehabilitation. 2013 Jan 1;33(1):49-56. doi: 10.3233/NRE-130927.

Cortes, M, Black-Schaffer, RM and Edwards, DJ. Transcranial Magnetic Stimulation as an Investigative Tool for Motor Dysfunction and Recovery in Stroke: An Overview for Neurorehabilitation Clinicians. Neuromodulation. 2012 Jul;15(4):316-25. doi: 10.1111/j.1525-1403.2012.00459.x. Epub 2012 May 24.

L Conesa, U Costa, E Morales, DJ Edwards, M Cortes, D Leon, M Bernabeu, J Medina (2012). An observational report of intensive robotic and manual gait training in sub-acute stroke. J Neuroeng Rehabil. 9(1): 13.

J Benito-Penalva, DJ Edwards, E Opisso, M Cortes, R Lopez-Blazquez, N Murillo, U Costa, JM Tormos, J Vidal-Samsό, J Valls-Solé (2011). Gait Training in Human Spinal Cord Injury Using Electromechanical Systems: Effect of Device Type and Patient Characteristics. Arch Phys Med Rehabil. 93(3): 404-412.

V Giacobbe, BT Volpe, GW Thickbroom, F Fregni, A Pascual-Leone, HI Krebs, DJ Edwards (2011). Reversal of TMS-induced motor twitch by training is associated with a reduction in excitability of the antagonist muscle. J NeuroengRehabil. 8(1): 46.

AR Brunoni, MA Nitsche, N Bolognini, M Bikson, T Wagner, L Merabet, DJ Edwards, A Valero-Cabre, A Rotenberg, A Pascual-Leone, R Ferrucci, A Priori, P Boggio, F Fregni. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation. 2012 Jul;5(3):175-95. doi: 10.1016/j.brs.2011.03.002. Epub 2011 Apr 1.

M Cortes, GW Thickbroom, A Pascual-Leone, J Valls-Sole, DJ Edwards (2010). P20-19 Spinal associative stimulation (SAS): a non-invasive stimulation paradigm to modulate spinal excitability. Clinical Neurophysiology 121: S224-S224.

DJ Edwards, L Dipietro, A Demirtas-Tatlidede, GW Thickbroom, FL Mastaglia, HI Krebs, A Pascual-Leone (2010). P20-18 Movement-generated afference paired with TMS: an associative stimulation paradigm. Clinical Neurophysiology 121: S223-S224.

Edwards DJ, On the understanding and development of modern physical neurorehabilitation methods: robotics and non-invasive brain stimulation. J Neuroeng Rehabil, 2009. 6: p. 3. (Invited Editorial)

M Cortes, GW Thickbroom, J Valls-Sole, A Pascual-Leone, DJ Edwards (2011). Spinal associative stimulation: A non-invasive stimulation paradigm to modulate spinal excitability. Clinical Neurophysiology. 122(11): 2254-2259.

Naïf U,  Bashir S, et al. (2011). Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 22(2): 233-51.

Oberman L, Edwards DJ, et al. (2011). Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature. J Clin Neurophysiol.

Edwards DJ, Dipietro L, Demirtas-Tatlidede A, Thickbroom GW, Mastaglia FL, Krebs HI, and Pascual-Leone A (2010). Movement-generated afference paired with tms: an associative stimulation paradigm. Clinical Neurophysiology 121, S223.

Cortes M, Thickbroom GW, Pascual-Leone A, Valls-Sole J, and Edwards DJ (2010). Spinal Associative Stimulation (SAS): A non-invasive stimulation paradigm to modulate spinal excitability. Clinical Neurophysiology 121, S224.

Kumru H, Murillo N, Vidal Samso J, Valls-Sole J, Edwards DJ, Pelayo R, Valero-Cabre A, Tormos JM, and Pascual-Leone A (2010). Reduction of spasticity with repetitive transcranial magnetic stimulation in patients with spinal cord injury. Neurorehabil Neural Repair.

Chye L, Nosaka K, Murray L, Edwards DJ and Thickbroom G (2010). Corticomotor excitability of wrist flexor and extensor muscles during active and passive movement. Hum Mov Sci 29, 494-501.

Bashir S, Edwards DJ and Pascual-Leon A. Neuronavigation increases the physiologic and behavioral effects of low-frequency rtms of primary motor cortex in healthy subjects. Brain Topogr, 2010

Volpe BT, Huerta PT, Zipse JL, Rykman A, Edwards DJ, Dipietro L, Hogan N, and Krebs HI (2009). Robotic devices as therapeutic and diagnostic tools for stroke recovery. Arch Neurol 66, 1086-1090.

Johnson LG, Collier KE, Edwards DJ, Philippe DL, Eastwood PR, Walters SE, Thickbroom GW and Mastagli FL (2009). Improvement in Aerobic Capacity after an Exercise Program in Sporadic Inclusion Body Myositis. J Clin Neuromuscul Dis 10, 178-184.

Edwards DJ, Krebs HI, Rykman A, Zipse J, Thickbroom GW, Mastaglia FL, Pascual-Leone A and Volpe BT (2009). Raised corticomotor excitability of m1 forearm area following anodal tdcs is sustained during robotic wrist therapy in chronic stroke. Restor Neurol Neurosci 27, 199-207.

Boggio PS, Amancio EJ, Correa CF, Cecilio S, Valasek C, Bajwa Z, Freedman SD, Pascual-Leone A, Edwards DJ and Fregni F. (2009). Transcranial DC stimulation coupled with tens for the treatment of chronic pain: a preliminary study. Clin J Pain 25, 691-695.

Edwards DJ and Fregni F. Modulating the healthy and affected motor cortex with repetitive transcranial magnetic stimulation in stroke: development of new strategies for neurorehabilitation. NeuroRehabilitation, 2008. 23(1): p. 3-14. (Invited Review)

Chapman D, Needham KJ, Allison GT, Lay B, and Edwards DJ (2008). Effects of experience in a dynamic environment on postural control. Br J Sports Med 42, 16-21.

Edwards DJ, Krebs HI, Rykman-Berland A, Zipse J, Thickbroom GW, Pascual-Leone A, and Volpe B. (2008). Priming human motor cortex with anodal tdcs for robotic wrist therapy in chronic hemiplegia. Neurorehabilitation and Neural Repair 22, 637.

Edwards DJ, Mastaglia FL, Byrnes ML, Fregni F, Pascual-Leone A, and Thickbroom GW (2007). Supraspinal inputs reduce corticomotor excitability during passive movement: evidence from a pure sensory stroke. Restor Neurol Neurosci 25, 527-533.

Millar LC, Edwards DJ, Blacke DJ, Mastaglia FL, and Thickbroom, GW (2007). Can magnetic brain stimulation help improve motor performance after stroke? Internal Medicine Journal 37, A113.

Edwards DJ, Krebs, HI, Rykman-Berland, A, Zipse, J, Thickbroom, GW, Mastaglia FL, Pascual-Leone, A, and Volpe, B. (2007). Raised corticomotor excitability after transcranial direct current stimulation is sustained during robotic wrist therapy in chronic stroke. Internal Medicine Journal 37, A115.

Johnson, LG, Edwards DJ, Thickbroom, GW, and Mastaglia FL (2006). A pilot study on the effects of a patient-specific, home-based, functional exercise program on patients with inclusion body myositis (IBM). Neuromuscular Disorders 16, S1-S208.

Thickbroom GW, Byrnes ML, Edwards DJ and Mastaglia FL (2006). Repetitive paired-pulse tms at i-wave periodicity markedly increases corticospinal excitability: a new technique for modulating synaptic plasticity. Clin Neurophysiol 117, 61-66.

 Rodrigues JP, Edwards DJ, Walters SE, Byrnes ML, Thickbroom GW, Stell R and Mastaglia FL (2006). Blinded placebo crossover study of gabapentin in primary orthostatic tremor. Mov Disord 21, 900-905.

Edwards DJ, Mastaglia FL, Byrnes ML, and Thickbroom GW (2006). Does a TMS induced increase in cortical excitability trigger adaptive mechanisms? a repeat bout iTMS study. Neurorehabilitation and Neural Repair 20, 95. 

Rodrigues JP, Edwards DJ, Walters SE, Byrnes ML, Thickbroom G Stell R and Mastaglia FL (2005). Gabapentin can improve postural stability and quality of life in primary orthostatic tremor. Mov Disord 20, 865-870.

Rodrigues JP, Edwards DJ, Walters SE, Thickbroom GW, Stell, R, and Mastaglia FL (2005). Differential effects of globus pallidus stimulation and levodopa on postural stability in Parkinson’s disease. Clinical Neurophysiology. 116. 

Rodrigues JP, Edwards DJ, Walters S, Thickbroom GW, Stell R, and Mastaglia FL (2005). Static and dynamic postural stability in orthostatic tremor. Clinical Neurophysiology. 166.

Rodrigues JP, Edwards DJ, Walters S, Thickbroom GW, Stell R, and Mastaglia FL (2005). State-dependent effects of Parkinson’s disease on static and dynamic postural stability. Proceedings of the Australian Neuroscience Society Annual Meeting. 16.

Edwards DJ, Rodrigues, JP, Stell, R, Walters, S, Thickbroom, GW, and Mastaglia FL (2005). The effect of lower limb tremor on postural stability. Proceedings of the Australian Neuroscience Society Annual Meeting. 16.

Edwards DJ, Mastaglia FL, and Thickbroom GW (2004). Short-latency intracortical inhibition during passive movement. Clinical Neurophysiology 115, 991, P-995.

Edwards DJ, Thickbroom GW, Byrnes ML, Ghosh S, and Mastaglia FL (2004). Temporal aspects of passive movement-related corticomotor inhibition. Hum Mov Sci 23, 379-387.

Edwards DJ, Mastaglia FL, and Thickbroom GW (2003). Corticomotor excitability during cyclic passive movement: effect of movement rate and phase. Proceedings of the Australian Neuroscience Society Annual Meeting. 14.

Edwards DJ, Thickbroom GW, Byrnes ML, Ghosh S, and Mastaglia FL (2002). Reduced excitability of the corticomotor pathway to the hand with cyclic passive movement of the index finger. Proceedings of the Australian Neuroscience Society Annual Meeting. 13.

Edwards DJ, Thickbroom GW, Byrnes ML, Ghosh S, and Mastaglia FL (2002). Reduced corticomotor excitability with cyclic passive movement: a study using transcranial magnetic stimulation. Hum Mov Sci 21, 533-540. 

Edwards DJ, Sacco P, Thompson ML, Thickbroom GW, and Mastaglia FL (1996). Corticomotor representation of elite badminton players. Proceedings of the American College of Sports Medicine 50th Annual Meeting Medicine, Science, Sports and Exercise

Edwards D, Sacco P, Pearce  AJ, Thickbroom GW, Thompson ML and Mastaglia FL (1996). Differences in the corticomotor projection to dominant and non-dominant wrist flexor muscles in elite badminton players. Proceedings of the Australian Neuroscience Society Annual Meeting. 7.

Collaborators

Alvaro Pascual-Leone, M.D., Ph.D., & Alex Rotenberg, M.D., Ph.D. — Berenson-Allen Center for Non-Invasive Brain Stimulation, Harvard Medical School

Felipe Fregni, M.D., Ph.D., M.P.H. — Laboratory of Neuromodulation and Center for Clinical Research Learning

Mar Cortes, M.D. — Burke Medical Research Institute

Bruce T. Volpe, M.D. — Feinstein Institute for Medical Research

Chema Tormos & Raul Pelayo — Guttmann Neurological Rehabilitation Institute, Barcelona

Gary Thickbroom, Ph.D., & Frank Mastaglia, M.D. — Centre for Neuromuscular and Neurological Disorders, University of Western Australia

Hermano Krebs, Ph.D., & Laura Dipietro, Ph.D. — Massachusetts Institute of Technology 

Funding

Current:

National Institutes of Health R21
Title: Non-invasive stimulation for improving motor function in spinal cord injury. 
Amount: $500,000
Dates of project: 07/01/2013 – 06/30/15. 
Role: Principal Investigator (with Alvaro Pascual-Leone)
Goals: Our hypothesis is that spinal excitability will be raised following spinal associative stimulation (SAS) intervention  in chronic traumatic incomplete SCI patients and that this will be associated with improved motor performance in the lower extremity.

National Institutes of Health R01 HD069776-01A1
Title: Transcranial Direct Current Stimulation and Robotic Training in Chronic Stroke.
Amount: $1,000,000
Dates of project: 2011-2016. 
Role: Principal Investigator (with Alvaro Pascual-Leone, BT Volpe, HI Krebs)
Goals: The major goal of this project is to evaluate whether multiple sessions of combined tDCS and robotic upper limb training in chronic hemiplegia, leads to a sustained clinical improvement in motor function. 


Past:

The WesternAustralian Institute for Medical Research & The Road Safety Council
Neurotrauma Research Program
Title: Cortical plasticity after spinal cord injury – measurement and modulation.
Dates of project: 2011-2012
Role: Co-Investigator

National Institutes of Health R21
Title: Transcranial Direct Current Stimulation and Motor Training in Chronic Stroke
Amount: $530,000
Dates of project: 2009-2010
Role: Principal Investigator

The Western Australian Institute for Medical Research & The Road Safety Council
Neurotrauma Research Program
Title: Using brain stimulation to help recovery after SCI and stroke.
Dates of project: 2007-2010
Role: Co-Investigator

The Western Australian Institute for Medical Research & The Road Safety Council
Neurotrauma Research Program
Title: Can interventional brain stimulation improve motor performance after stroke?
Dates of project: 2005
Role: Co-Investigator

Media & Professional Activities

September 11, 2014
Dr. Edwards gives an invited lecture on "Transcranial Brain Stimulation & Robotics in Human Motor Recovery" at the Annual Conference of the Ontario Brain Injury Association and Thomson, Rogers in Toronto, Canada. 

June 12, 2014
Dr. Edwards and other BMRI scientists teamed up with Red Bull Project Endurance to study the brains of elite athletes and better understand why athletes stop and slow down.  Watch a video documenting their intense week-long training program: "How Does the Brain of an Elite Athlete Work?"

May 27, 2014
CBS News interviews Dr. Edwards for a segment on how robotic rehabilitation is helping stroke patients.  The segment focuses on Brad Berman, one of Dr. Edward's patients, who is learning to walk again with the help of the Anklebot.

April 10, 2014
Dr. Edwards gives an invited seminar on "Non-Invasive Brain Stimulation and Robotics in Human Motor Recovery" at the UCLA Brain Mapping Center. 

February 25, 2014
Dr. Edwards co-directs an Intensive Course in Transcranial Magnetic Stimulation at Harvard Medical School and gives a lecture on "Transcranial Stimulation Combined with Behavioural Intervention in Neurological Patients."

February 21, 2014
Dr. Edwards gives the safety lecture at Harvard Medical School's two-day workshop on Transcranial Direct Current Stimulation

February 20, 2014
Dr. Edwards delivers an invited Keynote lecture at the Crawford Research Institute of the Shepherd Center in Atlanta, GA. 

January 14, 2014
Dr. Edwards gives an invited talk at MIT on "Transcranial Brain Stimulation in Human Motor Recovery," with a special focus on the combined use of brain stimulation and upper extremity rehabilitation robotics. 

December 2, 2013
Dr. Edwards is an invited speaker at the Forum on Neuroscience and Nervous System Disorders, organized by the Institute of Medicine's Board on Health Sciences Policy and held at the National Academy of Sciences in Washington, D.C., where he presented on "State of the Science: Transcranial Magnetic Stimulation & Transcranial Direct Current Stimulation." 

November 23, 2013
Dr. Edwards is a speaker at the inaugural NYC Neuromodulation Conference, where he also won the Clinical Award for advancement of neuromodulation clinical trials.

November 3, 2013
Dr. Edwards talks about stroke and stroke recovery on the Australian TV program Sunday Night.  Watch the program here.  (Dr. Edwards appears in Part 2.)

Dr. Edward's work on stroke rehabilitation, including the use of "virtual therapy" and motion-capture technology, is also featured by the West Australian online.

October 2, 2013
Dr. Edwards, Ms. Ryckman, and the work of the Restorative Neurology Clinic are featured in a news story about how robotic devices are helping stroke victims regain mobility, published in ADVANCE.

September 5, 2013
Dr. Edwards is a speaker at the Summit on Transcranial Direct Current Stimulation at the UC-Davis Center for Mind & Brain.  Watch his presentation, "tDCS and Robotics in Human Motor Recovery," on YouTube or iTunes

June 1, 2013
Dr. Edwards appears in a nationally televised CNN story on the business and life success of spinal cord injury patient Francesco Clark. Dr. Edwards was interviewed about the work from his laboratory in restoring Mr. Clarke’s function, and the laboratory’s focus on restoring function in patients using TMS-guided therapies. Watch the video here.

June 2013
Dr. Edwards is interviewed by Practical Neurology for a story about advancements in robotic-assisted therapy and its use in stroke patients.

May 18, 2013
Dr. Edwards is a guest on WOR Radio's Health Talk with Dr. Ronal Hoffman. Listen to the segment.

April 1, 2013
Dr. Edwards lectures at Introduction to transcranial Direct Current Stimulation (tDCS) and High Definition transcranial Direct Current Stimulation (HD-tDCS), a one-day intensive workshop on the fundamentals of the theoretical and practical aspects of tDCS and HD-tDCS held at Burke.

March 20, 2013
Brain therapy, Lyme breakthroughs fueled by federal stimulus, The Journal News.  Watch the accompanying video

February 23, 2013
Dr. Edwards presents on "Spinal Injury and the Potential Use of Exoskeleton Robotics for Recovery" at the International Transformational Technology Summit 3 held at Rancho Los Amigos National Rehabilitation Center in Downey, CA.  Read a preview of the summit in the Downey Patriot and watch Dr. Edwards's lecture on YouTube

October 30, 2012
Electric brain stimulation gains ground, San Francisco Chronicle

September 13, 2012
Burke Rehabilitation Center open house to show off cutting-edge work, The Journal News.